#8029

A Multi-Omics Cell Segmentation Pipeline Using RNA Spots and High-Plex Protein Neuro Images

Spot

Multi

Aster Wardhani¹, Winnie Leung¹, Lidan Wu¹, Joseph Phan¹, David Ross¹, Mithra Korukonda¹, Ashley Heck¹, Shilah Bonnett¹, Alyssa Rosenbloom¹, Joseph Beechem¹ ¹Nanostring Technologies, Seattle WA 98109

Providing cell

boundary in

instances where

membrane

staining is missing

Abstract

The most common brain cell segmentation method relies on nuclei information followed by fixed dilation to capture cytoplasmic areas. This arbitrary dilation disregards the cell shape and structure, potentially leading to erroneous inclusion of projections from neighboring cells. Our multi-omics profiling using CosMx[™] Spatial Molecular Imaging, proteomics data is acquired through iterative cycles of re-staining and clearing, yielding an extensive source of morphological information that is virtually unlimited and can be harnessed to bolster cell boundary delineation. Furthermore, in cases where membrane staining is absent, we harness transcriptomics data to infer cell locations. Our multi-omics cell segmentation framework amalgamates transcriptomics insights and high-dimensional protein images into a suite of input channels that feed into our custom machine learning segmentation model

Overview of multi-omics cell segmentation pipeline

Image acquisition system

• High Dynamic Range (HDR) mode used in protein image acquisition to improve dynamic range and avoid saturation

Registration & alignment

 Transcriptomic cycling data is aligned with proteomic cycling data using template matching across each acquisition for each field of view (FOV)

Image Corrections

- Intensity based corrections for illumination nonuniformity and bleaching
- Spatially corrections for lateral chromatic aberration and radial distortion

- Variable staining and tissue quality
- High cell density
- High auto-fluorescence

Sample & tissue challenges

• Complex connection of neurons

Multi-modal cell segmentation

- Using custom algorithm leveraging publicly available pre-trained ML based segmentation and auto thresholding to generate initial ground truth
- Train a new multi-channel neural net model using curated ground truth
- Leverage Nvidia RTX A4000 GPU to gain 5X inference performance

Generating Spot Density Heat Map

RNA reporter detection

- During a series of encoding cycles, each RNA spot is detected using Laplacian of Gaussian (LoG) filter matched to the expected spot morphology
- Localized with sub-pixel precision using a paraboloid surface fitting function

Spot Density Heatmap

- Each FOV yields over 10 million potential target locations across the entire encoding space
- These locations are used to populate a 2D spatial histogram which serves as a spot density map that highlight objects of interest in and around the cell

Ne

			Segmentation Architecture
			ML Based Architecture
1.			• Each group is fed into a 6-channel Neural Net (NN) model based on Ce
AC PL			 Using transfer learning, the new model is initialized with weights from
		and the second	Nuclei Nuclei NN
ea -	(s.)		Normalization Immune Model
Density Heatmap	Corresponding	5-Channel Morphology	Soma
			Combine Neurons 6-Channel
Omics Segme	ntation Input		into groups Endo Epi
+ RNA Spot Dens	ity heatmap		
os. characterized	by shared morph	ological features:	Nuclei group segmentation
Astrocytes group	Neurons group	Endo Epi group	results are used for
GFAP MX1	ChATMAP2	 APOE Doublecortin	cell compartment map
NCAM S100B	NRGN5-HTT	LamininNestin	Cell Compartment Cell Masks Extra-cellular Mask
	Neurofilament ligTUBB3	PDGFRBVIM	Training Datasets and Custom Algorithms
			 To train the NN model, we need training datasets
a di se			 Using a hybrid segmentation approach to generate the initial ground true
			Directoin groups are cognosted using Collease CD and Cuto2 models [2]
			Protein groups are segmented using Celipose CP and Cyto2 models [2]
		and the second second	gradient nows and cell probability matrices
GEAP	\$100B	Astrocytes Group	The matrices are combined to create the combined flow and cell prob
Ol / II			then converted into cell masks using gradient tracking
			Using Moment auto thresholding to segment protrusions [3]
			Combine protrusion and protein group cell masks using intersection o
			Generate
	C. C. A. M. A. A.	and the second	Gradient Flows Combine Nuclei Nacks
Iba1	P2ry12	Immune Group	per group
· · · · · · · · · · · · · · · · · · ·			Generate Cell Combine Cell Group Cell Comb
			Probability per Probability Masks Mas
			Protrusion
			Generate Masks Combine Masks
a			Masks
rRNA	APP-Hu-Mm	Soma Group	
P. A. 1. 18.			The horizontal and
Section of			vertical gradient
2			location of cell
			centers Nuclei Group Horizontal Flow Vertical Flow
			Cell probability
uN	TDP-43	Nuclei Group	applies weights
	the Property in the		signals and noise
			Astrocytes Group Honzontal Flow Ventical Flow
		See. Notes	Segmentation of Cell Protrusions
			Protrusion mask is obtained by
ment light	NRGN	Neurons Group	applying intensity Auto Size
			threshold calculated
•			moments
		2	Astrocytes Image Astrocytes Masks Se
		e e e e	Protrusion needs to be
		· · · · · · · · · · · · · · · · · · ·	rules of merging/splitting is
			calculated using the amount of Nuclei, Astrocyte One cell
stin	VIM	Endo. Epi. Group	area soma over union and soma overlap

NanoString Technologi 530 Fairview Avenue North, Seattle, WA 98109

