
Automating a spatial profiling workflow to explore the effects of 
hypoxia in the tumor microenvironment in head and neck cancer

Background: Head and neck cancer (HNC) is a heterogeneous group of malignancies that arise from the mucosal surfaces of the upper aerodigestive

tract. The tumor microenvironment (TME) of HNC is characterized by the presence of immune cells, stromal cells, and extracellular matrix

components. A key feature of the TME is hypoxia, which promotes tumor growth, invasion, and metastasis by altering the expression of genes

involved in angiogenesis, cell survival, and metabolism. Understanding the complex interplay between hypoxia and immune infiltrates in the TME of

HNC is crucial for the development of novel therapeutic strategies for the treatment of this disease. Whole transcriptome analysis by digital spatial

profiling is an excellent method of probing the TME, but assessing large cohorts can be time consuming. Automating a profiling workflow to reduce

hands-on time and region of interest (ROI) selection bias will enable exploration of large cohorts to identify mechanisms of action, potential drug

targets, and biomarkers.

Methods: We developed an optimized spatial multi-omic workflow to enable high-throughput spatial analysis on GeoMx® Digital Spatial Profiler

(DSP) using the Whole Transcriptome Atlas (WTA) and immuno-fluorescent morphology markers: SYTO82 (nuclei), CAIX (hypoxia), pan-cytokeratin

(epithelium), CD3 (T-cells). A.I.-based analysis (Oncotopix® Discovery) of serial section H&E images and GeoMx IF images was developed to identify

ROIs for GeoMx collection. Immune hot and cold selection used leukocyte density; tumor/stromal interface selection used epithelial areas. Areas of

illumination (AOI) were chosen using concentric CAIX expression gradients. Integrated analysis of digital images using Oncotopix Discovery and the

whole transcriptome was done to assess the above TME compartments.

Results: Automated ROI placement based on tumor/stroma, hypoxia and immune infiltration and AI /Deep Learning based AOI segmentation

reduced AOI selection time and improved accuracy of tissue compartment enrichment, especially between samples and tissue types. Automated

development of hypoxia gradient-based AOI enabled a selection strategy not possible in the standard DSP software. Cell phenotyping using IF

morphology scan was used to supervise cell deconvolution.

Conclusions: This work shows that ROI-based spatial analyses can be used to explore the effects of hypoxia levels on immune infiltration in HNC.

Automated AI-based ROI selection provides a means of sampling relevant tumor subtypes based on hypoxia and immune infiltrate criteria in an

unbiased, reproducible manner, and can provide a standardized, automated method for selecting ROIs and segmenting AOIs across a cohort of

mixed tissue types and pathological subtype, improving throughput.

ROI & AOI Selection

Whole Transcriptome Analysis

Summary

• The GeoMx DSP system is an excellent spatial biology 
acquisition system, but manual selection of ROIs can be 
time-consuming.

• We have created a method to automatically place ROIs and 
AOIs for GeoMx Digital Spatial Profiling using Visiopharm’s 
Oncotopix Discovery software which will enable large scale 
studies by increasing throughput.

• Use of AI to assist in ROI and AOI selection reduces selection 
bias and time and can increase cellular enrichment for 
profiling.

• Immune infiltrate in the hypoxia-low tumor AOIs consists 
largely of B and CD4 T cells.

• An expanded cohort analysis is planned.
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1. Sample Prep 2. Label 3. Image 4. Select ROI 5. Collect 6. Count 7. Analyze

1 2 3 5 6 74Select tissue sample for 
spatial experiment: FFPE, 
fresh frozen, or fixed 
frozen sample types 
compatible

Label tissue with 
barcoded antibodies 
and/or RNA and 
fluorescent antibodies.

Collect a high-resolution 
whole-slide image of the 
tissue

Process image(s) with 
Oncotopix Discovery 
software to select regions of 
interest (ROIs) and define 
Areas of Illumination (AOIs).

GeoMx DSP barcodes are attached 
to probes via a photocleavable 
linker and are released when 
illuminated with UV light. Probes 
from each AOI are then collected 
into separate wells of a microtiter 
plate.

Collected probes are 
counted on nCounter 
Analysis System or by a 
Next-Gen Sequencer

Data analysis is 
performed with GeoMx 
Data Analysis Suite, 
open source GeoMx 
Tools, and Oncotopix
Discovery.

Abstract

Jeni Caldara,1 Sarah E. Church,2 Regan Baird,1 David Mason,1 Kyla Teplitz,2 , Kristina Sorg,2 
Megan Vandenberg, 2  James Mansfield,1 Kelly Hunter,3 Joana Campos,3 Hisham 
Mehanna4, Jill Brooks4

Methods 

Optional serial section H&E

Figure 5: Comparison of Deep Learning techniques (Visiopharm) versus threshold techniques (GeoMx 
standard workflow) for CD3+ cell detection. Visiopharm’s deep-learning-based approaches are quite flexible and 
can be used to address many different cell and tissue segmentation problems such as separating CD3 positive cells 
from autofluorescent erithrocytes (5A). In this case, a  Deep Learning APP was trained to detect CD3+ cells and exclude 
autofluorescence including erythrocytes (5B). Note that bright objects are automatically excluded. Post processing 
steps provide the flexibility to exclude based on shape or size, and also to add a "watershed" region around small 
objects to prevent overlap of signal. By comparison, an intensity threshold approach (cutoff 95) was used to create a 
threshold mask (5C). Note that both erythrocytes and CD3+ cells are included when only using thresholding.

Figure 1:Using automated hotspot detection to select regions of interest (ROIs) for GeoMx. 1A shows a 4-color GeoMx immunofluorescence (IF) image. For this 
application, the four colors were syto82 (nuclear marker, blue), cytokeratin (green), CA-IX (red) and CD3 (yellow). 1B shows the syto83 and CA-IX markers. There are clearly regions 
of high CA-IX expression around the edges of this sample. A whole-slide cell segmentation was performed using syto82 as the nuclear marker, and a hotspot analysis performed 
(1C). 1Cshows regions of the sample with higher numbers of CA-IX expressing cells. 1D shows 4 regions of interest that were chosen based on the CA-IX hotspot analysis. Each of 
these ROIs can be further analyzed for tumor/stroma (or other marker-based segmentations) to form the areas of illumination (AOIs) that will be collected on GeoMx.

Figure 3: Generating AOIs using staining intensity gradients. This is the first of two methods used to generate AOI. 3A shows the 4-color IF image of ROI 2 in 
Sample 2A. 3B and 3G show the result of taking a CA-IX hotspot region (in green at the center of the circle) and expanding that region in 50 um increments to form a 
concentric gradient around the CA-IX hotspot. The concentric regions are shown in as overlays in 3B and 3G as green > blue> orange > red in terms of CA-IX intensity. 
In addition, this ROI was also analyzed for tumor/stroma, which is shown in 3H, with blue being tumor areas and green being stromal areas. The concentric CA-IX 
gradients are shown in 3I only for the tumor region (blue, red, yellow, magenta). Each of these gradient regions was then used to form a separate AOI for data 
collection on GeoMx. These 4 individual AOIs can be seen in 3C, 3D, 3E, and 3F. CA-IX expression by GeoMx confirms IF expression gradients (3J).

Sample 2A

Sample 2A

Figure 2: Creating AOIs from CA-IX hotspots using two different methods. 2A shows a whole-slide 4-color IF images 
taken on a GeoMx of Sample 2A. 2B shows a zoomed-in portion of the whole slide. For this sample, 7 circular hotspots were 
chosen to be ROIs. These can be seen superimposed on the color IF image. ROIs 1 and 3-7 were segmented using a paint-to-
train deep-learning-based approach into tumor and stromal regions (see Figure 4). ROI 2 was created larger than the 
others, was segmented into tumor and stroma, and then the tumor region segmented into a very high CA-IX-expression 
region and the rest. The high CA-IX region was expanded in 50 um steps to form concentric regions around the CA-IX 
hotspot. An expanded view of this process can be seen in Figure 3.

Figure 4: Creation of AOIs based on tumor/stroma tissue segmentation. This is the second method for the generation of AOIs. In this case, each circular ROI was 
segmented using a paint-to-train deep-learning-based approach into tumor and stromal regions, each of which became an AOI for GeoMx data collection. 4A through 4D shows 
the sequence for ROI 6 of Sample 2A. The circular ROI was segmented into tumor (blue) and stroma (green), and each AOI is shown in 4C (tumor) and 4D (stroma). Figures 4E 
through 4H show the same sequence of steps for ROI 1 of Sample 2A. 
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Figure 6: AOIs cluster primarily by intra-sample 

factors. UMAP of ~13,000 genes shows clustering by 

tumor/stroma and CA-IX score. Locally, clustering is also 

driven by sample and sample-level hypoxia/immune 

group.

Figure 8:  Genes differentially expressed between tumor and TME. A) Select genes implicated in HNC, other cancers, hypoxia, and tumor microenvironment are shown in 

boxplots. Fold change is >2 or <-2 and FDR < .05 for all genes shown. B) Differential expression was determined with a LMM using sample-level immune/hypoxia groups and 

sample as random effects. CA-IX high/low intra-tissue regions were not considered. Sample size is small and warrants further investigation. 

Figure 9:  Hypoxia low AOIs show increased immune infiltrate in tumor. Cell proportions for 

each AOI are estimated with cell deconvolution (SpatialDecon). Groups 1 and 3 show increased 

immune cell infiltrate in the tumor. This infiltrate is composed largely of B and CD4 T cells, and is 

specifically in the CA-IX low AOIs. CA-IX score is confounded with sample; a larger study is needed to 

determine if this observation is driven by hypoxia hotpots or sample-to-sample variance. 
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PathwaysFigure 7: Gradients of gene expression. 

A) In the gradient ROI from figure 3, we 

confirm CA9 decreases monotonically from 

tumor center to edge. A 25 gene hypoxia 

signature shows the same trend, modestly. 

B) Over 300 genes are correlated or anti-

correlated with CA9 (Pearson r > .99 or < -

.99). C) These genes are overrepresented in 

pathways including DNA repair, cell cycle, 

transcription, and chromatin organization. 

(Visualized with Reactome.)
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Stroma Area 
[um²]

Tumour 
Area [um²]

Tissue 2A 2 190 2 390 ROI 001 31126 39568
Tissue 2A 0 95 0 481 ROI 003 6284 64381
Tissue 2A 0 37 2 1115 ROI 004 2351 68345
Tissue 2A 0 18 6 1190 ROI 005 1137 69542
Tissue 2A 2 603 1 268 ROI 006 47741 22966
Tissue 2A 0 221 0 425 ROI 007 31044 39652
Tissue 2A 1 247 2 503 ROI 008 21532 49147
Tissue 2A 4 203 0 368 ROI 009 30554 40109
Tissue 2A 1412 148691 390 171425 Whole of 2A 18097862 16137832

Figure 10: Cellular analysis of ROIs and AOIs. ROIs and the AOIs inside them were analyzed using 

a deep-learning-based cellular segmentation using the syto82 as the nuclear marker and a paint-to-

train tissue segmentation. First, CA-IX staining (10A) was visualized as a heatmap (10B). The ROI 

showing the tumor mask and tumor cells in green (10C). Cells within the entire ROI were segmented 

using a pre-trained APP for nuclear detection (10D). Cells were classified into tumor or stromal cells 

using a deep learning network (10E). The power of this deep learning network is seen in 10F and 10G. 

10F shows the CD3 channel in yellow, but both erythrocytes and CD3+ cells can be seen. 10G shows 

the result of the cellular classification, showing only cells positive for CD3 marked as CD3+ (green 

outlines).
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2B 1 Hypoxialow/immunehigh 11.33 20 25 low No
3 1 Hypoxialow/immunehigh 12.00 2.5 17.5 low No
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