

Explore the Biology of Agriculture

with nCounter® Gene Expression Analysis

Pathway-based gene expression studies have been used in agriculture research to better understand hardiness, disease pathogenesis, and drought-tolerance of food and cash crops.

nCounter Gene Expression Assays reduce time to data with a simple workflow of less than 15 minutes hands-on time and streamlined analysis, generating results in under 24 hours.

- Profile up to 800 genes from a single sample
- Flexible probe design allows you to select the organism/genes of your choice
- · No amplification, RT or library prep with as little as 25 ng RNA
- nCounter platform cited in peer-reviewed publications
- No technical replicates required due to direct, digital counting
- Sample multiplexing with PlexSet reagents allows you to profile up to 96 genes in 96 samples at once, generating up to 9,216 data points

DID YOU KNOW?

nCounter probe sets have been designed for over 300 species, and there have been more than 6,000 probe designs made to date.

- Oil Palm
- Potato
- Rice
- Corn

- Tobacco
 Carrot
- Soy

Custom Solutions

Affordable for every lab and project

Product	Assay Type	Maximum Targets	Daily Sample Throughput
Custom CodeSets	User-designed, turn-key solution that comes ready-to-use	800	24-96
Elements™ TagSets	Self-assembled, interchangeable probes, optimized for smaller validation projects with maximum flexibility.	216	24-96
PlexSet™ Reagents	Self-assembled, interchangeable probes for high-throughput, sample multiplexing projects	96	192-1152

nCounter Workflow for Custom Gene Expression Assays

Probe Design

Probe sequences are designed by NanoString bioinformaticians free of charge. Probes can be designed for any species of interest with a known transcriptome sequence.

sends a Design Report.

LEAD TIME

3-5 days

Submit your RefSeg IDs NanoString designs probes, then creates and

Customer reviews and approves Design Report.

CUSTOMER **REVIEW**

LEAD TIME Customer-defined MANUFACTURE AND SHIP

NanoString manufactures and ships product to customer.

LEAD TIME

Custom CodeSets: 3-5 weeks Elements TagSets and PlexSet reagents: 1-3 days (customer orders oligo probes from 3rd party using provided sequences)

to NanoString. **LEAD TIME**

Customer-defined

Data Analysis

Generate highly-customizable reports, basic statistical outputs and publication-quality figures quickly and easily with our data analysis software.

- Recommended quality control on samples/lanes
- Tunable normalization and fold-change measurements
- · Statistical significance testing

Selected Publications:

- 1. Zhang, Y et al. A transportome-scale amiRNA-based screen identifies redundant roles of Arabidopsis ABCB6 and ABCB20 in auxin transport. Nat Commun. 2018;9(1):4204.
- 2. Tai, HH et al. Verticillium dahliae Disease Resistance and the Regulatory Pathway for Maturity and Tuberization in Potato. Plant
- 3. Greenham, K et al. Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in Brassica rapa. Elife. 2017;(6).
- 4. Neilson, J et al. Gene expression profiles predictive of cold-induced sweetening in potato. Funct Integr Genomics. 2017;17(4):459-476.
- 5. Gálvez, JH et al. The nitrogen responsive transcriptome in potato (Solanum tuberosum L.) reveals significant gene regulatory motifs. Scientific Reports. 2016;6:26090.
- 6. Tsai, YC et al. Characterization of genes involved in cytokinin signaling and metabolism from rice. Plant Physiol. 2012;158(4):1666-84.

Contact your local representative for a project consultation today and visit our website for more information: nanostring.com/custom-solutions

NanoString Technologies, Inc.

530 Fairview Avenue North T (888) 358-6266 Seattle, Washington 98109 F (206) 378-6288 nanostring.com info@nanostring.com Sales Contacts

United States us.sales@nanostring.com EMEA: europe.sales@nanostring.com

Asia Pacific & Japan apac.sales@nanostring.com Other Regions info@nanostring.com

FOR RESEARCH USE ONLY. Not for use in diagnostic procedures.

© 2019 NanoString Technologies, Inc. All rights reserved. NanoString, NanoString Technologies, the NanoString logo, nSolver, and nCounter are trademarks or registered trademarks of NanoString Technologies, Inc., in the United States and/or other countries.